3.68 \(\int ((b \csc (c+d x))^p)^n \, dx\)

Optimal. Leaf size=80 \[ \frac {\sin (c+d x) \cos (c+d x) \left ((b \csc (c+d x))^p\right )^n \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1-n p);\frac {1}{2} (3-n p);\sin ^2(c+d x)\right )}{d (1-n p) \sqrt {\cos ^2(c+d x)}} \]

[Out]

cos(d*x+c)*((b*csc(d*x+c))^p)^n*hypergeom([1/2, -1/2*n*p+1/2],[-1/2*n*p+3/2],sin(d*x+c)^2)*sin(d*x+c)/d/(-n*p+
1)/(cos(d*x+c)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4123, 3772, 2643} \[ \frac {\sin (c+d x) \cos (c+d x) \left ((b \csc (c+d x))^p\right )^n \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1-n p);\frac {1}{2} (3-n p);\sin ^2(c+d x)\right )}{d (1-n p) \sqrt {\cos ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((b*Csc[c + d*x])^p)^n,x]

[Out]

(Cos[c + d*x]*((b*Csc[c + d*x])^p)^n*Hypergeometric2F1[1/2, (1 - n*p)/2, (3 - n*p)/2, Sin[c + d*x]^2]*Sin[c +
d*x])/(d*(1 - n*p)*Sqrt[Cos[c + d*x]^2])

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 4123

Int[((b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(b*(c*Sec[e + f*x])^n)^
FracPart[p])/(c*Sec[e + f*x])^(n*FracPart[p]), Int[(c*Sec[e + f*x])^(n*p), x], x] /; FreeQ[{b, c, e, f, n, p},
 x] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \left ((b \csc (c+d x))^p\right )^n \, dx &=\left ((b \csc (c+d x))^{-n p} \left ((b \csc (c+d x))^p\right )^n\right ) \int (b \csc (c+d x))^{n p} \, dx\\ &=\left (\left ((b \csc (c+d x))^p\right )^n \left (\frac {\sin (c+d x)}{b}\right )^{n p}\right ) \int \left (\frac {\sin (c+d x)}{b}\right )^{-n p} \, dx\\ &=\frac {\cos (c+d x) \left ((b \csc (c+d x))^p\right )^n \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1-n p);\frac {1}{2} (3-n p);\sin ^2(c+d x)\right ) \sin (c+d x)}{d (1-n p) \sqrt {\cos ^2(c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 71, normalized size = 0.89 \[ -\frac {\sin (c+d x) \cos (c+d x) \sin ^2(c+d x)^{\frac {1}{2} (n p-1)} \left ((b \csc (c+d x))^p\right )^n \, _2F_1\left (\frac {1}{2},\frac {1}{2} (n p+1);\frac {3}{2};\cos ^2(c+d x)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[((b*Csc[c + d*x])^p)^n,x]

[Out]

-((Cos[c + d*x]*((b*Csc[c + d*x])^p)^n*Hypergeometric2F1[1/2, (1 + n*p)/2, 3/2, Cos[c + d*x]^2]*Sin[c + d*x]*(
Sin[c + d*x]^2)^((-1 + n*p)/2))/d)

________________________________________________________________________________________

fricas [F]  time = 0.62, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (\left (b \csc \left (d x + c\right )\right )^{p}\right )}^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*csc(d*x+c))^p)^n,x, algorithm="fricas")

[Out]

integral(((b*csc(d*x + c))^p)^n, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (\left (b \csc \left (d x + c\right )\right )^{p}\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*csc(d*x+c))^p)^n,x, algorithm="giac")

[Out]

integrate(((b*csc(d*x + c))^p)^n, x)

________________________________________________________________________________________

maple [F]  time = 3.01, size = 0, normalized size = 0.00 \[ \int \left (\left (b \csc \left (d x +c \right )\right )^{p}\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*csc(d*x+c))^p)^n,x)

[Out]

int(((b*csc(d*x+c))^p)^n,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (\left (b \csc \left (d x + c\right )\right )^{p}\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*csc(d*x+c))^p)^n,x, algorithm="maxima")

[Out]

integrate(((b*csc(d*x + c))^p)^n, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left ({\left (\frac {b}{\sin \left (c+d\,x\right )}\right )}^p\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b/sin(c + d*x))^p)^n,x)

[Out]

int(((b/sin(c + d*x))^p)^n, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\left (b \csc {\left (c + d x \right )}\right )^{p}\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*csc(d*x+c))**p)**n,x)

[Out]

Integral(((b*csc(c + d*x))**p)**n, x)

________________________________________________________________________________________